Principal kinematic formulas for germs of closed definable sets
نویسندگان
چکیده
We prove two principal kinematic formulas for germs of closed definable sets in Rn, that generalize the Cauchy-Crofton formula density due to Comte and infinitesimal linear author. In this setting, we do not integrate on space euclidean motions SO(n)⋉Rn, but manifold SO(n)×Sn−1.
منابع مشابه
Definable sets in algebraically closed valued fields: elimination of imaginaries
It is shown that if K is an algebraically closed valued field with valuation ring R, then Th(K) has elimination of imaginaries if sorts are added whose elements are certain cosets in K of certain definable R-submodules of K (for all n ≥ 1). The proof involves the development of a theory of independence for unary types, which play the role of 1-types, followed by an analysis of germs of definabl...
متن کاملKinematic Formulas for Finite Lattices
In analogy to valuation characterizations and kinematic formulas of convex geometry, we develop a combinatorial theory of invariant valuations and kinematic formulas for finite lattices. Combinatorial kinematic formulas are shown to have application to some probabilistic questions, leading in turn to polynomial identities for Möbius functions and Whitney numbers.
متن کاملDefinable principal congruences and solvability
We prove that in a locally finite variety that has definable principal congruences (DPC), solvable congruences are nilpotent, and strongly solvable congruences are strongly abelian. As a corollary of the arguments we obtain that in a congruence modular variety with DPC, every solvable algebra can be decomposed as a direct product of nilpotent algebras of prime power size.
متن کاملSome Generalizations of Locally Closed Sets
Arenas et al. [1] introduced the notion of lambda-closed sets as a generalization of locally closed sets. In this paper, we introduce the notions of lambda-locally closed sets, Lambda_lambda-closed sets and lambda_g-closed sets and obtain some decompositions of closed sets and continuity in topological spaces.
متن کاملElementary equivalence of lattices of open sets definable in o-minimal expansions of real closed fields
It is well-known that any two real closed fields R and S are elementarily equivalent. We can then consider some simple constructions of new structures out of real closed fields, and try to determine if these constructions, when applied to R and S, give elementarily equivalent structures. We can for instance consider def(R, R), the ring of definable functions from R to R, and we obtain without d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108251